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Abstract
By imposing special compatible similarity constraints on a class of integrable
partial q-difference equations of KdV-type we derive a hierarchy of second-
degree ordinary q-difference equations. The lowest (non-trivial) member of this
hierarchy is a second-order second-degree equation which can be considered
as an analogue of equations in the class studied by Chazy. This second-
order second-degree equation follows from a system in terms of two variables
from which also follows an associated third-order first-degree equation. We
present the isomonodromic deformation problem for the two-variable system
and discuss the relation between the hierarchy of second-degree ordinary q-
difference equations and other equations of Painlevé type.

PACS numbers: 02.30.Ik, 04.60.Nc, 05.45.−a
Mathematics Subject Classification: 34M55, 37J35, 37K10, 37K60, 39A13

1. Introduction

The construction and study of discrete Painlevé equations has been a topic of research
interest for almost two decades [13, 21, 28, 35]. Reviews of the subject may be found in
[14, 16]. The subject has culminated in the classification by Sakai of discrete as well as
continuous Painlevé equations based on the algebraic geometry of the corresponding rational
surfaces associated with the spaces of initial conditions [37]. As a byproduct of the latter
treatment, a ‘mistress’ discrete Painlevé equation with elliptic dependence on the independent
variable was discovered.

In the history of the Painlevé program, after the classification results for second-order
first-degree equations, Painlevé’s students, Chazy and Garnier [6, 7, 15], investigated the
classification of second-order second-degree equations and third-order first-degree equations.
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The classification of the second-degree class was completed by Cosgrove in recent years
[8, 9]. A partial classification for the third-order case was also obtained by the aforementioned
authors. The work of Bureau [3, 4] is also important in this respect. No classification
results exist for the analogous discrete case and hardly any examples of second-order second-
degree difference equations exist to date, with the notable exception of an (additive difference)
equation given by Estévez and Clarkson [10].

A key result of this communication is a second-order second-degree equation, which can
be considered as a q-analogue of an equation in the Chazy–Cosgrove class. This new equation
contains four free parameters, which suggests that it could be a q-difference analogue of the
second-order second-degree differential equation that is a counterpart of the sixth Painlevé
equation. There are several forms of a second-order second-degree equation related to the
sixth Painlevé equation that have appeared in the literature, notably one derived by Fokas and
Ablowitz [12] and another appearing in the work of Okamoto [32]. Difference analogues of
the Fokas–Ablowitz equation have been provided by Grammaticos and Ramani [34], but these
difference equations were of first degree.

The second-order second-degree q-difference equation follows from a system in terms
of two variables, from which a third-order first-degree equation also follows. For the system
in terms of two variables we establish integrability through a Lax pair in the form of an
isomonodromic deformation system. Furthermore, we show that the equation arises as a
similarity reduction from an integrable partial q-difference equation. Higher-order members
of this hierarchy also exist. We show explicitly through the same procedure the construction
of higher-order second-degree equations, which form a hierarchy associated with the new
equation.

2. q-difference similarity reduction

Lattice equations of KdV-type were introduced and studied over the last three decades
[19, 29], see [27] for a review. These lattice equations can be formulated as partial difference
equations on a lattice with step sizes that enter as parameters of the equation. Conventionally
we think of these parameters as fixed constants. However, in agreement with the integrability
of these equations, there exists the freedom to take the parameters as functions of the local
lattice coordinate in each corresponding direction. In this communication we consider the
case when the parameters depend exponentially with base q on the lattice coordinates.

We work in a space F of functions f of arbitrarily many variables ai (i = 1, . . . ,M for
any M) on which we define the q-shift operations

qTif (a1, . . . , aN) := f (a1, . . . , q ai, . . . , aM).

For u, v, z ∈ F , we consider the following systems of nonlinear partial q-difference equations:

(u − qTi qTju)(qTju − qTiu) = (
a2

i − a2
j

)
q2, (2.1)

aj (qTjv) qTi qTjv + ai(qTjv)v = ai(qTiv) qTj qTiv + aj (qTiv)v (2.2)

and

a2
i (z − qTiz)(qTj z − qTi qTj z) = a2

j (z − qTj z)(qTiz − qTi qTj z), (2.3)

where i, j = 1, . . . ,M . Each of these systems (2.1)–(2.3) represents a multi-dimensionally
consistent family of partial difference equations, in the sense of [1, 31], which implies that
they constitute holonomic systems of nonlinear partial q-difference equations. Another way
to formulate this property is through an underlying linear system which takes the form

qT
−1
i φ = M i (k)φ, (2.4)
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where φ = φ(k; {aj }) is a two-component vector-valued function and by consistency,
qT

−1
i qT

−1
j φ = qT

−1
j qT

−1
i φ leads to the set of Lax equations (for each pair of indices i, j )(

qT
−1
i M j

)
M i = (

qT
−1
j M i

)
M j . (2.5)

We will consider three different cases, associated respectively with equations (2.1)–(2.3). To
avoid proliferation of symbols we use the same symbol M i (k) for each of the respective Lax
matrices. For specific choices of the matrices M i the Lax equations (2.5) lead to the nonlinear
equations given above. In the case of the q-lattice KdV (2.1), the Lax matrices M i are given
by

M i (k; {aj }) = 1

ai − k

(
ai − qT

−1
i u, 1

k2 − a2
i + (ai + u)

(
ai − qT

−1
i u

)
, ai + u

)
. (2.6)

In the case of the q-lattice mKdV (2.2), the Lax matrices M i are given by

M i (k; {aj }) = 1

ai − k

(
ai

(
qT

−1
i v

)/
v, k2/v

qT
−1
i v, ai

)
. (2.7)

Finally, in the case of the q-lattice SKdV (2.3), the Lax matrices M i are given by

M i (k; {aj }) = ai

ai − k

(
1,

(
k2

/
a2

i

)(
z − qT

−1
i z

)−1

z − qT
−1
i z, 1

)
. (2.8)

These Lax matrices are straightforward generalizations of those with constant lattice
parameters given in e.g. [30].

We mention that the solutions of the equations (2.1)–(2.3) are related through discrete
Miura-type relations, namely

ai

(
z − qT

−1
i z

) = v
(
qT

−1
i v

)
, (2.9a)

s = (
ai − qT

−1
i u

)
v − ai qT

−1
i v, (2.9b)

qT
−1
i s = aiv − (ai + u) qT

−1
i v, (2.9c)

where s ∈ F is an auxiliary dependent variable. From these relations, the partial q-difference
equations (2.1)–(2.3) can be derived by eliminating s.

Similarity reductions of lattice equations have been considered in [25, 26, 30, 28, 31]
where it was shown that scaling invariance of the solution can be implemented through
additional compatible constraints on the lattice equations. In the present case of (2.1)–(2.3)
these constraints adopt the following form [11]

u({q−Nai}) = q−N 1 − λ(qN − 1)(−1)
∑

i
q log ai

1 + λ(qN − 1)(−1)
∑

i
q log ai

u({aj }), (2.10a)

v({q−Nai}) = 1 − λ(qN − 1)(−1)
∑

i
q log ai

1 + µ(qN − 1)
v({aj }), (2.10b)

z({q−Nai}) = qN 1 − µ(qN − 1)

1 + µ(qN − 1)
z({aj }), (2.10c)

where λ and µ are constant parameters of the reduction and N ∈ N represents a ‘periodicity
freedom’. The notation q log x refers to the logarithm of x with base q.

3
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In order to compute the corresponding isomonodromic deformation problems associated
with the similarity reductions we have the following constraints on the vector function of the
Lax pairs. In the case of (2.1) we have

φ(qNk; {aj })

=
(

(1 + λ(qN − 1)(−1)
∑

i
q log ai ), 0

−2λq
qN −1
q−1

(∑
i ai

)
(−1)

∑
i

q log ai , qN(1 − λ(qN − 1)(−1)
∑

i
q log ai )

)
φ(k; {q−Naj }).

(2.11)

In the case of (2.2)

φ(qNk; {aj })

=
(

(1 + λ(qN − 1)(−1)
∑

i
q log ai ) 0

0 q−N(1 + µ(qN − 1))

)
φ(k; {q−Naj }). (2.12)

In the case of (2.3)

φ(qNk; {aj }) =
((

1 − µ(qN − 1)
)

0
0 q−N(1 + µ(qN − 1))

)
φ(k; {q−Naj }). (2.13)

The similarity constraints (2.11)–(2.13), in conjunction with the discrete linear equations
(2.6)–(2.8) can be used to derive corresponding q-isomonodromic deformation problems.
That is (2.11)–(2.13) lead to q-difference equations in the spectral variable k, hence together
with the lattice equation Lax pairs we obtain q-isomonodromic deformation problems for the
corresponding reductions.

Remarks:

(i) The similarity constraints above were obtained through an approach based on Jackson-
type integrals, the details of which will be presented elsewhere [11]. By construction,
these constraints are compatible with the underlying lattice equations, which can be
checked a posteriori by an explicit calculation, presented in the appendix.

(ii) In this approach, the dynamics in terms of the variables ai appear through appropriately
chosen q-analogues of exponential functions, whereas the relevant Jackson integrals
exhibit an invariance through scaling by factors qN .

(iii) The parameters λ and µ arise in this setting through boundary contributions in a manner
analogous to the derivation in [30].

In the remainder of this communication our aim is to implement the similarity constraint
to obtain explicit reductions to ordinary q-difference equations. For simplicity we consider
only the reduction of the q-mKdV equation (2.2), leaving considerations of the q-KdV and
q-SKdV to a future publication [11]. There are two possible scenarios to derive similarity
reductions of the lattice equations using the constraint (2.10b).

‘Periodic’ similarity reduction. By fixing M = 2 and allowing N to vary, we select two lattice
directions, say the variables a1 and a2, and consider similarity reductions with different values
of N. This is a q-variant of the periodic staircase-type reduction of partial difference equations
on the two-dimensional lattice. For instance, with N = 2 the reduction is a second-order
first-degree q-Painlevé equation. Increasing N leads to q-difference Painlevé type-equations
of increasing order. However, we will not pursue this route here but leave it to a subsequent
publication [11]. These reductions are reminiscent of the work [17, 18, 36].

Multi-variable similarity reduction. The similarity constraints provide the mechanism to
couple together two or more lattice directions. By considering the case N = 1 we implement

4
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the similarity constraints on an extended lattice of three or more dimensions in order to obtain
coupled ordinary q-difference equations, in a way that is reminiscent of the approach of [31].
This is considered in the next section.

We have not considered the more general case of arbitrary M,N ∈ N, which we will
postpone to a future publication [11].

3. Multi-variable similarity reduction

In this section we consider explicitly the M = 1, 2 and 3 cases for N = 1.
For simplicity we shall in what follows denote the coefficient in (2.10b) as γ , i.e.

γ = 1 − λ(q − 1)(−1)
∑

i
q log ai

1 + µ(q − 1)
⇒ v({q−1ai}) = γ v({ai}), (3.1)

where γ alternates between two values, i.e., qT
2
i γ = γ .

In contrast to the usual difference case which was explored in [31] where in the case of
two variables we obtain a nontrivial O�E as a reduction, in the q-difference case we have
to consider at least three independent variables to obtain a nontrivial system of O�Es as a
reduction.

In [31] the compatibility between the similarity constraint and the lattice system was
established and led to a system of higher order difference equations in the reduction, namely
equations which were on the level of the first Garnier system. In contrast to the q = 1 work,
the 3D similarity constraint here is somewhat simpler and leads to a second-order equation
(which is of second-degree, and is a principal result of this communication).

3.1. Two-variable case

Let us now select among the collection of variables {aj } two specific ones which for simplicity
we will call a and b. Denote the q-shifts in these variables by an over-tilde ˜ and an over-hat̂ respectively. Equation (2.2) may now be written as

b̂v̂̃v + av̂v = aṽ̂̃v + bvṽ, (3.2)

where the over-tilde ˜ refers to the q-translation a �→ qa and the over-hat ̂ refers to the
q-translation b �→ qb (so if v ≡ v(a, b), ṽ ≡ v(qa, b), v˜ ≡ v(q−1a, b), v̂ ≡ v(a, bq), . . .).

Equation (3.1) gives the constraint v = γ̂̃v to impose on (3.2) (where ̂̃γ = ˜̃γ = γ ). This
leads to the linear first-order (in that it is a two-point) ordinary difference equation

v˜ = Cṽ, (3.3)

where C = γ̃ (aγ + b)/(a + bγ ). In the appendix the consistency between the lattice
equation (3.2) and the constraint (3.3) is shown by direct computation.

3.2. Three-variable case

Take three copies of the lattice mKdV equation with a1 = a, a2 = b, a3 = c,

b̂v̂̃v + av̂v = aṽ̂̃v + bvṽ, (3.4a)

cvṽ + avv = aṽ ṽ + cvṽ, (3.4b)

cvv̂ + bvv = b̂vv̂ + cvv̂, (3.4c)

5
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where c = qc, together with the constraint

v(q−1a, q−1b, q−1c) = γ v(a, b, c). (3.5)

(The similarity constraint is shown by a direct computation to be compatible with the
multidimensionally consistent system of mKdV lattice equations in the appendix.) We now
proceed to derive the reduced system which leads to a (higher-degree) ordinary q-difference
equation in terms of one selected independent variable, say the variable a. The remaining
variables b and c will play the role of parameters in the reduced equation. Thus, we can derive
the following system of two coupled O�Es for v(a, b, c) and w(a, b, c) ≡ v(a, b, q−1c):

γ v = w
aγ̃ ṽ − bw˜
aw˜ − bγ̃ ṽ

, (3.6a)

w˜ = v
aw − cv˜
av˜ − cw

, (3.6b)

where ˜̃γ = γ . We consider the system (3.6a) and (3.6b) to constitute a q-Painlevé system
with four free parameters.

The system (3.6a) and (3.6b) can be reduced to a second-order second-degree ordinary
difference equation as follows. Introduce the variables

X = v

w
, V = ṽ

v
, W = w̃

w
, (3.7)

then from (3.6a) we obtain

γ̃
ṽ

w˜ = γ̃ V XW˜ = aγX + b

bγX + a
, (3.8)

whereas from (3.6b) we get

W = V X

X̃
= a + q−1cXV

q−1c/X + aV
, (3.9)

using also the definitions (3.7). Thus, we obtain a quadratic equation for V in terms of X and
X̃ and hence also we have W in terms of X and X̃. Inserting these into (3.8) we obtain a
second-order algebraic equation for X. Alternatively, avoiding the emergence of square roots,
the following second-order second-degree equation for X may be derived:[

γ̃ 2X̃X˜ −
(

aγX + b

bγX + a

)2
]2

= γ̃
c2

a2

1

X

(
aγX + b

bγX + a

)[
γ̃ X̃(1 − XX˜) + q−1(1 − XX̃)

aγX + b

bγX + a

]
×

[
q−1γ̃ X˜(1 − XX̃) + (1 − XX˜)

aγX + b

bγX + a

]
. (3.10)

We consider this second-degree equation to be one of the main results of this communication.
The following third-order (four-point) ordinary non-autonomous difference equation of

first-degree also follows directly from the system (3.8) and (3.9),

�
qaγ̃ X̃ + b

bγ̃ X̃ + qa

[
q−1γX(1 − X̃˜̃X) + (1 − XX̃)

qaγ̃ X̃ + b

bγ̃ X̃ + qa

]
= q�̃

aγX + b

bγX + a

[
γ̃ X̃(1 − XX˜) + q−1(1 − XX̃)

aγX + b

bγX + a

]
, (3.11)

6
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where � is given by

� = γ̃ 2X̃X˜ −
(

aγX + b

bγX + a

)2

.

This equation may help to fix the ‘proper’ branch of the multivalued second-degree
correspondence (3.10).

We now proceed to present the Lax pair for the q-Painlevé system (3.6a) and (3.6b) and
the system (3.8) and (3.9). The Lax pair is formed by considering the compatibility of two
paths on the lattice: along a ‘period’ then in the a direction and evolving in the a direction
then along a ‘period’. Using (2.12) the evolution along a period is converted into a dilation
of the spectral parameter, k, by q. The result is the following isomonodromic q-difference
system for the vector φ(k; a) which using the results of section 2 yields

φ(k; q−1a) = M (k; a)φ(k; a), (3.12a)

φ(qk; a) = L(k; a)φ(k; a), (3.12b)

where

M (k; a) = 1

a − k

⎛⎝av˜/v k2/v

v˜ a

⎞⎠ , (3.13a)

and

L(k; a) = 1

a − k

(
aγ v/̃v k2/̃v

q−1γ v q−1a

) (
bγ̃ ṽ/w k2/w

γ̃ ṽ b

)(
cw/v k2/v

w c

)
(3.13b)

where we have suppressed the dependence on the variables b and c (which now play the role
of parameters) and omitted the unnecessary prefactors (b − k)−1 and (c − k)−1, as well as an
over factor q−1(1 + µ(q − 1)).

The consistency condition obtained from the two ways of expressing φ(qk; q−1a) in
terms of φ(k; a) is formed by the Lax equation

L(k; q−1a)M (k; a) = M (qk; a)L(k; a). (3.14)

A gauge transformation can be obtained expressing the Lax matrices in terms of the variables
introduced in (3.7). Setting

M(k; a) = 1

a − k

⎛⎜⎝a/V˜ k2

1 aV˜
⎞⎟⎠ , (3.15a)

L(k; a) = 1

a − k

(
γ̃ (abγX + k2) k2(aγX + b)/V

q−1γ̃ V (a + bγX) q−1(ab + k2γX)

) (
c/X k2

1/X c

)
, (3.15b)

the Lax equations (3.14) (replacing L and M by L and M respectively) yield a set of relations
equivalent to the following two equations:

γ̃ V V˜X˜ = aγX + b

a + bγX
, (3.16)

aV 2 + q−1c

(
1

X
− X̃

)
V − a

X̃

X
= 0, (3.17)

using also γ̃ = γ˜ . This set follows directly from (3.8) and (3.9).

7
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3.3. Four-variable case

Suppose we have four variables ai, i = 1, . . . , 4. Select a = a1 to be the independent variable
after reduction. Introduce the dependent variables wj−2 = qT

−1
j v, j = 3, 4. Then directly

from the q-lattice mKdV equation (2.2) we have the set of equations

w˜j = v
awj − aj+2 v˜
av˜ − aj+2wj

, j = 1, 2, (3.18)

where as before the tilde denotes a q-shift in the variable a. At the same time the multiply shifted
object qT

−1
3 qT

−1
4 v˜ can be expressed in a unique way (due to the CAC property) in terms of v˜

and qT
−1
j v = wj−2, j = 3, 4, by iterating the relevant copies of the q-lattice mKdV equation

in the variables aj , j �= 2, leading to an expression of the form qT
−1

3 qT
−1

4 v˜ =: F(v˜, w1, w2),

where F is easily obtained explicitly. Imposing the similarity constraint (3.1) we obtain
γ̃ qT2v = F(v˜, w1, w2) and inserting this expression into the q-lattice mKdV (2.2) with

i = 1, j = 2 we obtain(
a +

a2

γ

a3w2 − a4w1

a3w1 − a4w2

)
(a2γ̃

−1F(v˜, w1, w2) − aṽ) = (
a2

2 − a2
)
vṽ. (3.19)

With the explicit form of F(v˜, w1, w2) equation (3.19) reads(
a2

2 − a2
)
γ γ̃ ṽ(a3w1 − a4w2)

[
a
(
a2

3 − a2
4

)
v˜ + a3

(
a2

4 − a2
)
w1 + a4

(
a2 − a2

3

)
w2

]
= [(a2a3 − γ aa4)w2 + (γ aa3 − a2a4)w1]

[
a
(
a2

3 − a2
4

)
(a2w1w2 − γ̃ aṽv˜)

+
(
a2a4

(
a2 − a2

3

)
v˜ − aa3

(
a2

4 − a2
)
γ̃ ṽ

)
w1

+
(
a2a3

(
a2

4 − a2)v˜ − γ̃ aa4
(
a2 − a2

3

)̃
v
)
w2

]
, (3.20a)

and this is supplemented by the two equations

avw1 + a3w1w˜1 = a3vv˜ + av˜w˜1, (3.20b)

avw2 + a4w2w˜2 = a4vv˜ + av˜w˜2, (3.20c)

which is equivalent to a five-point (fourth-order) q-difference equation in terms of v alone,
containing five free parameters: a2, a3, a4, λ and µ (inside γ and γ̃ ). This would be an
algebraic equation, so we proceed as follows in order to derive a higher-degree q-difference
system. Introduce the variables

Xi = v

wi

, Wi = w̃i

wi

, i = 1, 2, (3.21)

while retaining the variable V = ṽ/v as before. By definition we have

V

Wi

= X̃i

Xi

, i = 1, 2, (3.22)

and from (3.20b) and (3.20c) we obtain

Wi = qa + ai+2V Xi

qaV + ai+2/Xi

= V Xi

X̃i

, i = 1, 2, (3.23)

8
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whilst from (3.20a) we get(
a2

2 − a2
)
γ γ̃ V

(
a3

X1
− a4

X2

)(
a
a2

3 − a2
4

V˜ + a3
a2

4 − a2

X1
+ a4

a2 − a2
3

X2

)

=
(

a2a3 − γ aa4

X2
+

γ aa3 − a2a4

X1

)[
a
(
a2

3 − a2
4

)( a2

X1X2
− γ̃ a

V

V˜
)

+

(
a2a4

a2 − a2
3

V˜ − aa3(a
2
4 − a2)γ̃ V

)
1

X1

+

(
a2a3

a2
4 − a2

V˜ − γ̃ aa4
(
a2 − a2

3

)
V

)
1

X2

]
. (3.24)

From (3.23) we obtain the set of quadratic equations for V ,

qa
Xi

X̃i

V 2 + ai+2

(
1

X̃i

− Xi

)
V − qa = 0, i = 1, 2, (3.25)

from which by eliminating V we obtain[
a3(1 − X1X̃1)X2 − a4(1 − X2X̃2)X1

] [
a3(1 − X1X̃1)X̃2 − a4(1 − X2X̃2)X̃1

]
= q2a2(X1X̃2 − X2X̃1)

2. (3.26)

Furthermore, solving V from the quadratic system as

V = qa
X2X̃1 − X1X̃2

a3(1 − X1X̃1)X2 − a4(1 − X2X̃2)X1
, (3.27)

and inserting this into (3.24) we obtain a second-order equation in both X1, X2 coupled to the
equation (3.26) which is first order in both X1, X2. It is this coupled system of two equations
in X1, X2 which forms our higher order generalization of (3.10). The system of (3.24) and
(3.26) with (3.27) constitutes a third-order system with five parameters.

The derivation of the Lax pair follows the same approach as that for the three-variable
case (with an extra factor in L due to the additional lattice direction). We omit details here,
which we intend to publish in the future [11].

3.4. Beyond the four-variable case

It is straight forward to give the form of the full hierarchy, however due to lack of space we
postpone this until a later publication [11].

4. Conclusion and discussion

In this communication we have presented the results of a scheme to derive partial q-difference
equations of KdV type and consistent symmetries of the equations and demonstrated how it
can be implemented. Lax matrices follow from this approach. A notable result is the derivation
of the higher-degree equation (3.10), showing that the scheme presented here allows for the
derivation of new results within the field of discrete integrable systems.

The first-, second- and third-order members of the N = 1 hierarchy have been presented.
The scheme continues to give successively higher-order equations by considering successively
higher dimensions of the original lattice equation. One may ask the natural question as to
whether this gives an ‘interpolating’ hierarchy which, contrary to the usual cases, increases

9
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the order and number of parameters of the equations by one in each step, rather than a two-
step increase. A further natural question connected with this hierarchy is its relation to the
q-Garnier systems of Sakai [38].

We will present full details of the scheme from which the lattice equations (2.1)–(2.3)
and their associated constraints follow in a future publication [11]. There we will consider the
most general case of symmetry reductions (arbitrary N ∈ N) of all three lattice equations.

We also intend to return in a future publication to the question of limits and degeneracies
of the equations presented in this paper. These include the q → 1 continuum limit, the q → 1
discrete limit and the q → 0 crystal or ultradiscrete limit.
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Appendix

In this appendix we present the result of explicit calculations showing the consistency of the
lattice equations and constraints.

A.1. Two-variable consistency

We shall check the consistency between the lattice equation (3.2) and the constraint v = γ̂̃v by
direct computation. This computation is illustrated in figure A1. Assuming the values v0, v1

as indicated in figure A1 are given, we compute successively v12, v2 etc, where the subscripts
refer to the shifts in the lattice variables a, b respectively, as is evident from figure A1. Points
other than v0 and v1 are computed using either the lattice equation (indicated by ×) or by
using the similarity constraint (indicated by ◦). The value v−1,−2 is the first point which can
be calculated in two different ways (hence indicated in the diagram by ⊗). Without making
any particular assumptions on how γ depends on a and b, a straightforward calculation shows
that the two ways of computing v−1,−2 are indeed the same, for any choice of initial data v0

and v1, provided that γ obeys the relation(
a + bγ

b + aγ

)̂̃ (
a + bγ

b + aγ

)−1

= γ̃

γ̂
. (A.1)

A particular solution of this relation iŝ̃γ = γ ⇔ γ̂ = γ̃ , (A.2)

and hence ˜̃γ = γ implying that γ is an alternating ‘constant’ which is in accordance with
the value given in (2.10b). The reduced equation in this case is (3.3), which can be readily
integrated.

More generally, equation (A.1) can be resolved by setting

a + bγ

b + aγ
= ν̃

ν̂
, γ =

̂̃ν
ν
, (A.3)

10
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Figure A1. Consistency on the 2D lattice.

Figure A2. Consistency on the 3D lattice.

leading to the consequence that ν has to solve the q-lattice mKdV (3.2). In principle we could
take for ν any solution of the reduced equation (3.3) and use this to parametrize the reduced
equation for v via the relations (A.3). In any event, we see that the two-variable case does not
lead to interesting nonlinear equations.

A.2. Three-variable consistency

In this case the consistency diagram is shown in figure A2. A similar notation as the previous
case is used as is evident from figure A2. The initial data v0, v1 and v2 are given, and the
indicated values on the vertices are computed either by using one of the lattice equations
(3.4a)–(3.4c) or the similarity constraint (3.5) over the diagonal. Thus, v1,2 is obtained from
(3.4a) yielding

v1,2 = v0
av2 − bv1

av1 − bv2
,

whilst from the similarity constraint we obtain

v−1,−3 = γ2v2, v−3 = γ1,2v1,2, v−2,−3 = γ1v1,

assuming that γ shifts along the lattice, indicated by the indices, and finally the value of
v−1,−2,−3 can be computed in two different ways, leading to

v−1,−2,−3 = γ0v0 = av−2,−3 − bv−1,−3

av−1,−3 − bv−2,−3
v−3 = aγ1v1 − bγ2v2

aγ2v2 − bγ1v1
γ1,2v0

av2 − bv1

av1 − bv2
,

leading quadratic identity in v1 and v2. Assuming that the latter must hold identically, and
thus setting all coefficients equal to zero, we obtain the following conditions on γ :

γ1,2,3 = γ1 = γ2 = γ3,

11
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from which we conclude that γ is an alternating ‘constant’, for instance

γ = αβ(−1)n+m+···
(α, β constants) (A.4)

and this leads to the conditions from which it is easily deduced that the form (3.1) of γ satisfies
these conditions.
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[24] Kajiwara K, Noumi M and Yamada Y 2002 q-Painlevé systems arising from q-KP hierarchy Lett. Math. Phys.

62 259–68
[25] Nijhoff F W 1996 On some ‘Schwarzian’ equations and their discrete analogues Algebraic Aspects of Integrable

Systems: In Memory of Irene Dorfman ed A S Fokas and I M Gel’fand (Basle: Birkhäuser) pp 237–60
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